آموزش آمار آموزش احتمال حل مسائل متغيرهاي تصادفي با توزيع توأم .
.
 
سوال:

16. دو نقطه به تصادف روي طنابي به طول L انتخاب می کنيم به طوري که دو نقطه در دو طرف از نقطه وسط طناب قرار گيرند. [ به بيان ديگر، دو نقطه X و Y متغيرهاي تصادفي مستقل هستند به طوري که X داراي توزيع يکنواخت روي فاصله ( متغيرهاي تصادفي با توزيع توأم ،0) و Y داراي توزيع يکنواخت روي فاصله (L ، متغيرهاي تصادفي با توزيع توأم) است.] احتمال اينکه فاصله بين دو نقطه انتخابي بيشتر از متغيرهاي تصادفي با توزيع توأم باشد را پيدا کنيد.

جواب:

برای اینکه فاصله از متغيرهاي تصادفي با توزيع توأم بیشتر باشد اگر X از 0 تا متغيرهاي تصادفي با توزيع توأم تغیر کند Y می تواند از متغيرهاي تصادفي با توزيع توأم تا متغيرهاي تصادفي با توزيع توأم مقدار بگیرد

متغيرهاي تصادفي با توزيع توأم

 و اگر X از متغيرهاي تصادفي با توزيع توأم تا متغيرهاي تصادفي با توزيع توأم تغیر کند Y می تواند از متغيرهاي تصادفي با توزيع توأم تا متغيرهاي تصادفي با توزيع توأم مقدار بگیرد

متغيرهاي تصادفي با توزيع توأم

 در نتیجه متغيرهاي تصادفي با توزيع توأم

منابع:
مبانی احتمال
مجله اینترنتی آموزش آمار و احتمال
http://amar.ibep.ir